Preston, Ref. 148	Kinahmi and Kuopio quartzites (3	67 76	High angles to s-planes
Naha, Ref. 149	Quartz-mica schist	78	Microfractures in garnet grains bisect acute angle between sets of deformation lamellae
Christie and Raleigh, Ref. 140	Quartzites (Orocopia Mts., southern California)		
	Specimen No. 1	90	
	Specimen No. 2	88	Subnormal to first generation fold axis and axial plane
	Specimen No. 3	76	Parallel to first generation fold axis
	Quartzite (Moine thrust zone, Scotland)	76	High angles to foliation
Hara, Ref. 150	Calcite-quartz vein (Sangun formation, western Japan)	72	Subparallel to c fabric axis and normal to σ_1 derived from calcite twin lamellae
Hara, Ref. 151	Quartz vein (Sangun formation, western Japan)	67	Subparallel to c fabric axis
Hansen and Borg, Ref. 120	Calcite-cemented sand- stone		
	Specimen E2	74	Parallel to bedding, normal to fold axis, and subparal- lel to σ_1 derived from cal- cite twin lamellae
	Specimen E4	76	Subparallel to bedding, nor- mal to fold axis, and sub- parallel to σ_1 derived from calcite twin lamellae

* *

r #

.

.

[continued on following page]

Reference	Rock Type	Approximate Angle ^a between Best Developed Sets of Lamellae (degrees)	Orientation of Acute Bisector ^b (° ₁)
Hansen and Borg (continued)	Specimen E6	60	Parallel to bedding, subnor- mal to fold axis, and par- allel to σ_1 derived from calcite twin lamellae

^aDetermined by Friedman if not provided by the author.

^bAttitude of acute bisector was determined by Friedman if not provided by the author. This bisector is equated to σ_1 by Friedman as a working hypothesis.

The writer disregards the influence of pre-existing preferred orientations of quartz c on the deformation lamellae pattern. He agrees with Turner and Weiss (Ref. 13, pp. 433-434), who find that the quartz lamellae pattern, with its characteristic orthorhombic symmetry pattern, can be used to reconstruct the stress system (also commonly orthorhombic in symmetry) "because [even] in tectonites there is a wide range of orientation of c axes, and because crystallographic control of lamellae in any crystal is not rigorous, the influence of the initial orientation pattern of quartz axes upon the lamellae pattern is commonly negligible."